LinMot®

Ι

Anwendungsbeispiele

Impressum Produktion: Redaktion: Gestaltung: Druck: Erstellt: Rechte:

Ernst Blumer Florian Jörg Matthias Furler NTI AG Juni 2007 NTI AG

Einführung

a. Parametrierung mit LinMot-Talk1100	2
c. Steuerung der Zustandsmaschine mittels digitaler Ein- und Ausgänge an X4	3
b. Control- und StatusWord	3

Applikationsbeispiele

1. Schieber mit zwei Endpositionen5
2. Verfahren mit Bewegungsprofilen7
3. Analog Position Mode9
4. Indexing Mode (Step/Direction/Zero)10
5. Anfahren von beliebigen Endpositionen über serielle Schnittstellen oder Feldbusse11
6. Anfahren von 8 Positionen via digitaler I/O's15
7. Ablaufsteuerung16
8. Hochpräzises Positionieren18
9. Betrieb mit externem absolut Sensor19
10. Ansteuerung einer Bremse20
11. Sichere Impulssperre21
12. Parallelbetrieb von zwei Motoren22
13. Kraftverdoppelung durch Master Booster23
14. Auswertung von Endlagen und Referenzschaltern24
15. Pressen mit definierter Kraft25
16. Kraftregelung mit 0.1 N Auflösung27
17. Einbindung von rotativen Motoren28
18. Synchronisation zur Königswelle: Master Encoder 0° bis 360°
19. Synchronisation zur Königswelle: CAM1/CAM230

a. Parametrierung mit LinMot-Talk1100

Motorkonfiguration mittels Motor Wizard

Wird ein neuer Controller in Betrieb genommen, muss zuerst der angeschlossene Motor konfiguriert werden. LinMot-Talk1100 bietet hierzu den Motor Wizard an, welcher den Benutzer Schritt für Schritt durch die Grundeinstellungen des Motors führt.

Der Motor Wizard ist über das Zauberstab-Symbol aufrufbar

Konfiguration der Applikationsparameter

Sämtliche Parameter der LinMot Firmware können mit der LinMot-Talk1100 Software je nach Anforderungen der Anwendung angepasst werden. Jedem Parameter ist eine eindeutige Identifikationsnummer zugeordnet. Diese Nummer, UPID (Unique Parameter ID) genannt, ist eine 16 Bit Integer Zahl. Sie wird im hexadezimal Format angegeben.

Über die Suchfunktion "Find UPID" (Menüleiste "Search -> Find UPID" oder Tastenkombination "Ctrl + F") kann der betreffende Parameter anhand der UPID Nummer gesucht werden. Die UPID wird bei jedem Parameter in der Spalte "UPID" angezeigt (Siehe Abbildung).

LinMot-Talk1100 - V3.6 Build 20070119								
File Search Controller Services Options Wind	ïle Search Controller Services Options Window Tools Manuals Help							
Find UPID Ctrl+F	ifline	• 💽 🕨 🖿 🖑 📉	s 🖪 💐 🖻 🌘	b 🔺 🎜 🗉 🛛				
Project		<u>n</u>			🗸 🗙 🖲	7		
CanUpen Default offline	Ir	Name	Value	Raw Data	UPID	Туре	Scale	
	ľ	⁺ FF Constant Force	0A	0000h	139Ch	SInt16	0.001 A	
		FF Friction	0 A 0	0000h	139Dh	SInt16	0.001 A	
🖻 🚍 Motion Control SW		FF Spring Compensation	0 A/m	0000h	139Eh	SInt16	1 A/m	
E Controller Configuration		FF Damping	0 A/(m/s)	0000h	139Fh	SInt16	0.01 A/(m/s)	
Motor Configuration		FF Acceleration	0 A/(m/s^2)	0000h	13A0h	UInt16	0.001 A/(m/	
		Spring Zero Position	0 mm	00000000h	13A1h	SInt32	0.0001 mm	
		P Gain	1.5 A/mm	000Fh	13A2h	UInt16	0.1 A/mm	
		Diciam Loci	3 A/[m/s]	UU1Eh	13A3h	UInt16	U.1 A/(m/s)	
Ctrl Par Set Selection		luan <mark>h</mark> u uura	U A/(mm^s)	0000h	13A4h 10A51	UInt16	0.1 A/(mm^s)	
Control Parameter Set A		Intergrator Limit	UA 15 A	0000h	13A5h	SINUE	0.001 A	
E Control Parameter Set B		Maximal Current	15A 0	3498h 00004	13A6h 13A75	SINCIS	0.001 A 0.0001	
Advanced Settings		Noise Deadband Width	Umm	0000n	13A/h	Untib	0.0001 mm	
Current Controller								
⊕ Errors & Warnings								
: ±····;Ξ LANopen Interface	-	<					>	
Parameters								

UPID Anzeige in LinMot-Talk1100

b. Control- und StatusWord

Die Abbildung zeigt den Signalverlauf zum Bestromen und Referenzieren (Homing) des Motors, im normalen Betrieb sowie bei der Quittierung eines aufgetretenen Fehlers. Sie zeigt ausserdem die wichtigsten Signale (Zustand der relevanten Bits im Control und Status Word) zur Steuerung der Zustandsmaschine. Die Zustandsmaschine wird in Kapitel 3 des "Motion Control SW" Handbuches beschrieben.

Signale zur Steuerung der Zustandsmaschine

c. Steuerung der Zustandsmaschine mittels digitaler Ein- und Ausgänge an X4

Die Steuersignale für die Zustandsmaschine können auf den Stecker X4 konfiguriert werden, um die Zustandsmaschine des Controllers über digitale Signale zu steuern. Sämtliche Signale können beliebig auf X4.3 bis X4.11 gelegt werden. Nachfolgend eine Beispielkonfiguration.

Eingänge:				
Ctrl Word:	Switch On (Input)	On	UPID 1036h	Switch On auf X4.3
Ctrl Word:	Home (Input)	On	UPID 1037h	Home auf X4.4
Ctrl Word:	Error Acknowledge (Input)	On	UPID 1038h	Error Acknowledge auf X4.5

Ausgänge:				
Status Word:	Homed (Output)	On	UPID 1039h	Homed auf X4.6
Status Word:	Error (Output)	On	UPID 103Ah	Error auf X4.7

🔼 LinMot-Talk1100 - V3.6 Build 20070119							
File Search Controller Services Options Wind	dow Tools Manuals Help						
🛅 🏅 😂 🔚 🎒 🥵 🛛 CanOpen Default o	ffine 🔽 🕨 🔳 🖑 💐 😫	💐 🖬 🏚 📥 🍠 🔳 🕅					
		🗸 🗙 🕲					
🖻 🚍 Motion Control SW		Value					
🚊 🚍 Controller Configuration	🔚 IO X4.3 Function	Ctrl Word: Switch On (Input)					
🔤 Power Bridge	🔚 IO X4.4 Function	Ctrl Word: Home (Input)					
🖻 🖃 🔀 V4 I/O Definitions	🔚 IO X4.5 Function	Ctrl Word: Error Acknowledge (Input)					
🔤 IO X4.3 Function	🔚 IO X4.6 Function	Status Word: Homed (Output)					
- 🔚 IO X4.4 Function	🔚 IO X4.7 Function	Status Word: Error (Output)					
- 🔚 IO X4.5 Function	🔚 IO X4.8 Function	None					
- 🔚 IO X4.6 Function	🔚 IO X4.9 Function	None 🦳					
- 🔚 IO X4.7 Function	🔚 IO X4.10 Function	None					
- 🔚 IO X4.8 Function	III X4.11 Function	None					
- 8 IO X4.9 Function	III ×4.12 Function	Ctrl Word: Safety Voltage Enable (Input)					
IO X4.10 Function	■ ×4 1/0 Logic Definitions						
🛛 🔅 👘 🕅 🕄 🛛 🖓 🖉 🖉							
		<u>·</u>					
Parameters							

Steuersignale konfiguriert auf Stecker X4

Die Controller der E1100 Serie (ausgenommen E1100-GP(-HC)) haben auf X4.12 den Safety Voltage Enable Eingang. An diesem muss für den Betrieb eine Spannung von +24 V anliegen. Ansonsten wird die PWM-Generierung der Leistungselektronik hardwaremässig nicht freigeschaltet. Die Logik (active High / active Low) der digitalen Ein- und Ausgänge wird unter "X4 I/O Definitions (UPID 104Bh bis 1053h) konfiguriert.Damit kann der Errorausgang so konfiguriert werden, dass er im Betrieb High (+24V) und im Fehlerzustand Low (0V) ist.

1. Schieber mit zwei Endpositionen

Aufgabe

Ein Produkt muss von Punkt A (Pos 1, 20.5mm) nach Punkt B (Pos 2, 80.4mm) transportiert werden. Die Ansteuerung der beiden Positionen wird über ein digitales Signal realisiert. Wenn der Motor eine der beiden Positionen erreicht, soll dies an einem digitalen Ausgang des Controllers signalisiert werden.

Lösung

Für diese Aufgabe stellt LinMot den Run Mode "Triggered VA Interpolator" zur Verfügung. In diesem Modus können auf eine steigende bzw. fallende Flanke eines digitalen Triggersignals zwei Positionen angefahren werden. Sowohl Geschwindigkeit wie auch die Beschleunigung können frei programmiert werden (VA Interpolator). Der VA Interpolator berechnet zur Laufzeit ein trapezförmiges Geschwindigkeits-Profil. Die Position 1 wird auf die fallende, Position 2 auf die steigende Flanke des Triggersignals an X4.6 angefahren. Befindet sich der Antrieb an einer der beiden Positionen, wird dies an X4.5 signalisiert (als digitalen Ausgang konfigurieren).

Hardware Schnittstelle:	
Das Triggersignal wird an X4.6 angeschlossen	

RunMode konfig	jurieren:			
	Triggered VA-Interpolator	On	UPID 1450h	Run Modus Triggered VA-Interpolator

Konfiguration des Triggereingangs:						
	Trigger (Input)	On	UPID 1039h	X4.6 als Trigger Eingang		
	Direct	On	UPID 170Ch	Trigger Modus direkt		

Konfiguration des Ausgangs					
Status Word:	In Target Position	On	UPID 1038h	X4.5 als Ausgang für "In Target Position"	

Konfiguration der Position 1:							
	Position	20.5mm	UPID 145Ah	Position 1			
	Max. Speed	0.2m/s	UPID 145Bh	Maximale Geschwindigkeit			
	Acceleration	3m/s^2	UPID 145Ch	Beschleunigung			
	Deceleration	3m/s^2	UPID 145Dh	Verzögerung			

Konfiguration der Position 2:						
	Position	80.4mm	UPID 145Fh	Position 2		
	Max. Speed	0.2m/s	UPID 1460h	Maximale Geschwindigkeit		
	Acceleration	5m/s^2	UPID 1461h	Beschleunigung		
	Deceleration	5m/s^2	UPID 1462h	Verzögerung		

Oszilloskop

LinMot[®]

LinMot[®]

2. Verfahren mit Bewegungsprofilen

Aufgabe

In einer Anlage werden Kontaktlinsen verpackt. Damit die Flüssigkeit nicht verschüttet wird, müssen sie ruckfrei (ruckminimiert) transportiert werden. Die Positionierung der Verpackung an ihren Zielpunkt (100mm) muss ruckfrei ausgeführt werden, wogegen die Rückfahrt zur Ausgangsposition (0mm) des Linearantriebs möglichst schnell erfolgen muss. Die Bewegung wird durch das Triggersignal eines Näherungsschalters ausgelöst.

Lösung

Für diese Anwendung bietet sich der Run Mode "Triggered Time Curve" an. Dabei wird durch die steigende Flanke am Triggereingang ein im Controller gespeichertes Bewegungsprofil aufgerufen. Die Ausführung des Bewegungsprofils kann verzögert zum Triggersignal ausgelöst werden (Delayed). Dies erleichtert die Abstimmung zwischen der Auslösung des Näherungsschalters und dem Start der Bewegung.

Generieren des gewünschten Bewegungsprofils mithilfe des Kurvenservices (Handbuch LinMotTalk1100). Als ID der erstellten Kurve 1 wählen und sie auf den Controller runterladen.

 Hardware Schnittstelle:

 Das Triggersignal wird an X4.6 angeschlossen

RunMode konfigurieren:							
Triggered Time Curve	On	UPID 1450h	Run Modus Triggered Time Curve				

Konfiguration des Triggereingangs:								
	Trigger (Input)	On	UPID 1039h	X4.6 als Trigger Eingang				
	Delayed	On	UPID 170Ch	Trigger Modus verzögert				
	Rise Delay Time	50ms	UPID 170Fh	Verzögerungszeit einstellen				

Konfiguration des auszuführenden Bewegungsprofils:							
	Rise Curve ID	1	UPID 1482h	ID der Kurve einstellen			

Die LinMot-Talk1100 Software unterstützt den Import von CSV Dateien (Excel). Damit können mit Excel erstellte Bewegungsprofile in den Controller importiert werden (Siehe Abbildung).

1	🛚 Microsoft Excel - Excel_Curve.csv							
	<u>F</u> ile <u>E</u> dit	⊻iew In	sert F <u>o</u> rm	iat <u>T</u> ools	<u>D</u> ata <u>W</u> i	ndow <u>H</u> elj) _BX	
ß	🛩 冒	8	5 m -	Σf_{s}	80%	- 2	* B *	
	H1	-	=					
	A	В	С	D	Е	F	G -	
1	0						_	
2	0.001							
3	0.0032							
4	0.0067							
5	0.0117							
6	0.0183							
7	0.0261							
8	0.0353							
9	0.0463							
10	0.0585							
11	0.072							
12	0.0872							
13	0.1038							
14	0.1216							
15	0.141							
16	0.162							
1/	0.1842							
18	0.2077							
19	0.2331							
20	0.2000							
21	0.2070							
22	0.3171							
23	0.3401							
25	0.0004							
26	0.4495							
27	0.4861							
28	0.5239							
29	0.5636							
30	0.6047							
31	0.6469							
32	0.6907							
33	0.7362							
34	0.7828							
		Excel_Ci	irve /					
F					NUM			

In der Spalte A sind die Stützwerte eines Bewegungsprofils in mm angegeben. Die CSV-Datei kann im Kurvenservice von LinMot-Talk1100 importiert werden. Beim Erstellen einer neuen Kurve als "Setpoint Calculation Wizard" "FromFile..." wählen.

LinMot[®]

3. Analog Position Mode

Aufgabe

Ein mittels Linearantrieb geführtes Messer muss Flaschen mit unregelmässiger Form aufschneiden. Das Messer soll dabei der Form der Flasche nachgeführt werden. Ein Distanzsensor misst den Abstand zur Oberfläche der Flasche und gibt dem Linearantrieb über ein analoges Signal von 0V (entspricht 20mm) bis 10V (entspricht 80mm) die Sollposition vor. Mittels eines zweiten, digitalen Signals soll der Antrieb an eine Warteposition (0mm) gefahren werden können.

Lösung

Die Positionsvorgabe mittels analogem Eingangs-Signal wird vom Run Mode "Analog" unterstützt. Dabei positioniert sich der Linearmotor zwischen den frei konfigurierbaren 0V und 10V Positionen "proportional" zur Eingangsspannung an X4.4. Um den Antrieb an eine Warteposition zu fahren, bietet sich die Funktion "Going To Position" an. Dazu wird ein digitales Signal an X4.3 angeschlossen. Erkennt der Controller an diesem Eingang einen hohen Pegel, wechselt er in den Zustand 15: Going To Position und bewegt den Antrieb an die konfigurierte Position. Liegt an diesem Eingang ein tiefer Pegel an, ist der Controller im Zustand 8: Operation Enabled und folgt dem analogen Eingangssignal.

Hardware Schnittstelle:									
Das analoge Signal wird an X4.4 angeschlossen.									
Das digitale Signal wird an X4.3 angeschlossen.									
RunMode konfig	RunMode konfigurieren:								
	Analog	On	UPID 1450h	Run Modus Analog					
Konfigurieren de	es analogen Eingangs:								
	Position	On	UPID 1790h	X4.4 als analoger Eingang					
Konfigurieren de	es digitalen Eingangs:								
Ctrl Word:	Go To Position	On	UPID 1036h	X4.3 konfigurieren					
Konfigurieren de	er Position für 0V:								
	0V Position 20mm UPID 14D2h Position für 0V konfigurieren								
Konfigurieren de	er Position für 10V:								
	10V Position	80mm	UPID 14D3h	Position für 10V konfigurieren					
Konfigurieren de	es vordefinierten VA-Interpolato	r (Dynamikbe	grenzung des Analo	gmodus):					
	Max. Speed	1m/s	UPID 14Beh	Maximale Geschwindigkeit					
	Acceleration	4m/s^2	UPID 14BFh	Beschleunigung					
	Deceleration	4m/s^2	UPID 14C0h	Verzögerung					
Konfiguration der Position und Dynamik der Warteposition (GoToPosition):									
	Position	0mm	UPID 1725h	Warteposition konfigurieren					
	Max. Speed	0.1m/s	UPID 1726h	Maximale Geschwindigkeit					
	Acceleration	1m/s^2	UPID 1727h	Beschleunigung					
	Deceleration	1m/s^2	UPID 1728h	Verzögerung					

Ist das Signal an X4.3 hoch (24V), fährt der Linearmotor an die Position 0mm (Warteposition). Liegt keine Spannung an X4.3 an, folgt der Antrieb dem analogen Signal an X4.4. Für die analoge Positionierung werden die Einstellungen des vordefinierten VA-Interpolators verwendet.

Eine Übersicht und Beschreibung der verschiedenen Zustände sind im Handbuch "Motion Control SW" zu finden.

www.LinMot.com

4. Indexing Mode (Step/Direction/Zero)

Aufgabe

In einer bestehenden Anwendung wurden bisher Schrittmotoren mit übergeordneter Schrittmotorsteuerung (Step/Direction/Zero) eingesetzt. Diese sollen nun aufgrund höherer Anforderungen an Dynamik und Prozesssicherheit durch Linearmotoren ersetzt werden. Die Schrittweite beträgt 0.1µm/Schritt.

InNot

Lösung

Für diese Anwendung bietet sich der Run Mode "Position Indexing" an. In diesem Modus folgt der Motor dem Zählerwert des Indexer-Eingangs. Das Indexer-Signal kann STEP/DIREC-TION/ZERO (SDZ) oder ein Inkrementalsignal (ABZ) sein.

Hardware Schn	ittstelle:							
Indexing-Signal a	an X12 anschliessen.							
RunMode konfig	gurieren:							
	Position Indexing	On	UPID 1450h	Run Modus Position Indexing				
Encoder Quelle	definieren:		1					
	Ext Sensor Input X12	On	UPID 172Ah	Anschluss des Indexing-Signals				
Encoder Typ de	finieren:							
	Step Dir Zero (SDZ)	On	UPID 128Eh	Typ des Encoders festlegen				
Decodierung ei	nstellen							
	1x	On	UPID 128F	Steigende Flanke zählen (Step)				
		÷						
Positionsschritt	t pro Indexer-Inkrement einstelle	en:						
	Resolution	0.1µm	UPID 14DDh	Schrittweite einstellen				
	<u> </u>	ш						
Dynamik begrenzen/konfigurieren:								
	Max. Speed	1m/s	UPID 14BEh	Maximale Geschwindigkeit				
	Acceleration	5m/s^2	UPID 14BFh	Beschleunigung				
	Deceleration	5m/s^2	UPID 14C0h	Verzögerung				

5. Anfahren von beliebigen Endpositionen über serielle Schnittstellen oder Feldbusse

Aufgabe

Die Endpositionen des Linearantriebs sollen vom Bediener via Panel frei programmiert werden können. Er will in diesem Beispiel von der Ausgangsposition (0mm) auf 20mm (v=1m/s, a=10m/s^2) fahren, anschliessend auf 80mm (0.2m/s, 1m/s^2) und danach wieder zurück auf 0mm (2.5m/s, 30m/ s^2). Das Panel ist an einer SPS angeschlossen, welche über eine serielle Schnittstelle oder Feldbus mit dem LinMot Controller kommuniziert.

Lösung

Die LinMot Controller lassen sich über verschiedene Schnittstellen wie Ethernet, Profibus DP, CANOpen, DeviceNet, RS232 und RS485 (LinRS Protokol) mit einer übergeordneten Steuerung verbinden. Dadurch lassen sich die gewünschten Endpositionen direkt über die Steuerung vorgeben. Zur Kommunikation mit dem Controller werden die folgenden Ressourcen benötigt.

Control Word

Mit dem Control Word wird die Zustandsmaschine des Controllers gesteuert. Unter anderem wird über das Control Word der Controller gestartet und initialisiert, Fehler werden bestätigt, ein QuickStop ausgelöst usw.

Status Word

Im Status Word werden Informationen zum Controller angezeigt. Ist der Antrieb initialisiert, liegt ein Fehler oder eine Warnung an, befindet sich der Antrieb an der Zielposition usw.

"VAI Go To Position (010xh)" Befehl

StateVa	r														
Die Stat Im Zusta den Cor	Die StateVar zeigt den Zustand, in dem sich der Controller befindet (Operation Enabled: 8, Homing: 9, Error: 4 usw). Im Zustand 4 (Error) wird in den 8 niederwertigsten Bits der Errorcode angezeigt. Im Zustand 8 (Operation Enabled) zeigen die 4 niederwertigsten Bits den CommandCount. Die StateVar wird zur Synchronisation der Motion Commands über Feldbusse benötigt.														
Main State								Sub	State						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

StateVar						
	Main State	Sub State				
00	Not Ready To Switch On	0				
01	Switch On Disabled	0				
02	Ready To Switch On	0				
03	Setup Error	Error Code which will be logged				
04	Error	Logged Error Code				
05	HW Tests	0 (Not yet defined)				
06	Ready To Operate	0 (Not yet defined)				
07						
08	Operation Enabled	Bits 03: Motion Command Count Bit 4: Event Handler Active Bit 5: Motion Active Bit 6: In Target Position Bit 7: Homed				
09	Homing	0Fh: Homing Finished				
10	Clearance Check	0Fh: Clearance Check Finished				
11	Going To Initial Position	0Fh: Going To Initial Position Finished				
12	Aborting	Not yet defined				
13	Freezing	Not yet defined				
14	Quick Stop (Error Behaviour)	Not yet defined				
15	Going To Position	0Fh: Going To Position Finished				
16	Jogging +	01h: Moving positive 0Fh: Jogging +Finished				
17	Jogging -	01h: Moving negative 0Fh: Jogging -Finished				
18	Linearizing	Not yet defined				
19	Phase Search	Not yet defined				

Ausführung

Bevor ein Befehl gesendet wird, muss überprüft werden, dass sich der Controller im Zustand 8 (Operation Enabled) befindet (Highbyte der StateVar = 08h)und referenziert ist (Homed: Bit 11 im Status Word bzw. Bit 7 in der StateVar gesetzt). Ausserdem ist zu beachten, dass der Controller einen Befehl nur ausführt, wenn der Command Count des Command Headers (niederwertigste 4 Bits) nicht gleich dem Command Count in der StateVar (niederwertigste 4 Bits) ist. Im einfachsten Fall setzt man von Befehl zu Befehl das Bit 0 des Command Headers abwechslungsweise 0 bzw. 1 (toggeln).

Beispiel: 1. Motor Enabled? (Highbyte der StateVar = 08h)

- 2. Motor referenziert? (Bit 11 des Status Word gesetzt)
- 3. Positionsbefehl 1 senden (Command Header = 0101h, Command Count = 1)
- 4. Motor in Position? (Bit 6 der StateVar gesetzt)
- 5. Positionsbefehl 2 senden (Command Header = 0100h, Command Count = 0)
- 6. Motor in Position? (Bit 6 der StateVar gesetzt)

Zur Aufgabe:

Nachfolgend wird gezeigt, wie die Positionen in der Aufgabenstellung nacheinander abgefahren

werden können, und was vor und nach dem Senden eines Befehls überprüft werden muss.

1. Prüfen:	
	Ist der Controller in Zustand 8? (Highbyte der StateVar = 08h).
	Ist der Motor referenziert? (Bit 11 im Status Word).
	Liegt ein Fehler an? (Highbyte der StateVar = 04h bzw. Bit 3 im Status Word gesetzt).

2. Senden des Fahrbefehls auf 20mm mit v = 1m/s und a=10m/s^2. Als Command Count im Header 1h setzen:							
Word	Beschreibung	Beispiel (Wert	e hexadezimal)	Einheit			
1	Command Header with ID	0101h	VAI Go To Position, 1 = Command Count	-			
2-3	1. Command Parameter	00030D40h	Position, 50mm	0.1 um			
4-5	2. Command Parameter	000F4240h	Maximale Geschwindigkeit, 1m/s	1E-6 m/s			
6-7	3. Command Parameter	000F4240h	Beschleunigung, 10m/s^2	1E-5 m/s^2			
8-9	4. Command Parameter	000F4240h	Verzögerung, 10m/s^2	1E-5 m/s^2			

3. Prüfen:	
	Ist der Befehl vom Controller ausgeführt worden? Bit 0-3 der StateVar (CommandCount) = 1h
	Ist der Motor an der Zielposition? Bit 6 (In Target Position) der StateVar gesetzt.
	Liegt ein Fehler an? (Highbyte der StateVar = 04h bzw. Bit 3 im Status Word gesetzt)

4. Senden des Fahrbefehls auf 80mm mit v = 0.2 m/s und a = 1 m/s^2. Als Command Count im Header 2h setzen.							
Word	Beschreibung	Beispiel (Wert	Beispiel (Werte hexadezimal)				
1	Command Header with ID	0102h	VAI Go To Position, 2 = Command Count	-			
2-3	1. Command Parameter	000C3500h	Position, 80mm	0.1 um			
4-5	2. Command Parameter	00030D40h	Maximale Geschwindigkeit, 0.2m/s	1E-6 m/s			
6-7	3. Command Parameter	000186A0h	Beschleunigung, 1m/s^2	1E-5 m/s^2			
8-9	4. Command Parameter	000186A0h	Verzögerung, 1m/s^2	1E-5 m/s^2			

5. Prüfen:	
	Ist der Befehl vom Controller ausgeführt worden? Bit 0-3 der StateVar = 2h
	Ilst der Motor an der Zielposition? Bit 6 (In Target Position) der StateVar gesetzt
	Liegt ein Fehler an? (Highbyte der StateVar = 04h bzw. Bit 3 im Status Word gesetzt)

6. Senden des Fahrbefehls auf 0mm mit v = 2.5 m/s und a = 30 m/s^2. Als Command Count im Header 3h setzen					
Word	Beschreibung	Beispiel (Werte hexadezimal) Einheit			
1	Command Header with ID	0103h	VAI Go To Position, 3 = Command Count	-	
2-3	1. Command Parameter	00000000h	Position, 0mm	0.1 um	
4-5	2. Command Parameter	002625A0h	Maximale Geschwindigkeit, 2.5m/s	1E-6 m/s	
6-7	3. Command Parameter	002DC6C0h	Beschleunigung, 30m/s^2	1E-5 m/s^2	
8-9	4. Command Parameter	002DC6C0h	Verzögerung, 30m/s^2	1E-5 m/s^2	

7. Prüfen:	
	Ist der Befehl vom Controller ausgeführt worden? Bit 0-3 der StateVar = 3h
	Ist der Motor an der Zielposition? Bit 6 (In Target Position) der StateVar gesetzt.
	Liegt ein Fehler an? (Highbyte der StateVar = 04h bzw. Bit 3 im Status Word gesetzt)

6. Anfahren von 8 Positionen via digitaler I/O's

Aufgabe

In einer In einer Anwendung soll ein Produkt nach Grösse sortiert werden und entsprechend an maximal 7 Positionen abgelegt werden. Die eingesetzte SPS besitzt nur digitale I/O's. Es werden 8 Positionen benötigt. Eine Ausgangsposition, an der die Produkte aufgenommen werden und 7 Positionen für die Ablagen. Die 8 Positionen sollen über 8 einzelne digitale Eingangssignale aufgerufen werden. Sobald die betreffende Position erreicht ist, soll dies über einen InPosition-Ausgang angezeigt werden. Die Fahrt zu den Ablagen soll eher langsam (0.2 m/s, 2 m/s^2), die Rückfahrt zur Ausgangsposition schnell (1 m/s, 10 m/s^2) erfolgen.

Lösung

Die Aufgabe wird mit Easy Steps gelöst. Easy Steps ist eine einfach zu bedienende Anwendung, bei der über eine steigende Flanke an den Eingängen von X4.4 bis X4.11 jeweils ein konfigurierbarer Fahrbefehl ausgelöst wird. Easy Steps ist eine Applikations-Software und muss via LinMot-Talk1100 installiert werden. ("File -> Install Firmware", ..\Applications\EasySteps)

Konfigurieren von X4.3 als InPosition-Ausgang:								
Status Word:	In Target Position (Output)	On	UPID 1036h	X4.3 als InPosition-Ausgang				
	·		1	1				
Konfigurieren vo	Konfigurieren von X4.4 und Position 1:							
	Goto Abs Pos	On	UPID 3500h	Befehl bei steigender Flanke an X4.4 konfigurieren				
	Position	0mm	UPID 3510h	Position 1 festlegen				
	Max. Speed	1m/s	UPID 3511h	Maximale Geschwindigkeit				
	Acceleration	10m/s^2	UPID 3512h	Beschleunigung				
	Deceleration	10m/s^2	UPID 3513h	Verzögerung				
Konfigurieren vo	on X4.5 und Position 2:							
	Goto Abs Pos	On	UPID 3600h	Befehl bei steigender Flanke an X4.5 konfigurieren				
	Position	200mm	UPID 3610h	Position 2 festlegen				
	Max. Speed	0.2m/s	UPID 3611h	Maximale Geschwindigkeit				
	Acceleration	2m/s^2	UPID 3612h	Beschleunigung				
	Deceleration	2m/s^2	UPID 3613h	Verzögerung				
	•			·				
Konfigurieren vo	Konfigurieren von X4.6 bis X4.11 und Position 3 bis Position 8							
analog zu X4.4 und X4.5								

7. Ablaufsteuerung

Aufgabe

In einer Anlage werden Schaumstoffquader getestet. Ein Linearmotor soll den Quader mit einer Kraft von 40 N zusammendrücken. Nach 2 Sekunden Presszeit wird gemessen, ob der Quader innerhalb der Toleranzen liegt. Der ganze Ablauf soll mittels eines Triggersignals gestartet werden. Ist der Quader in Ordnung, soll dies an einem digitalen Ausgang signalisiert werden. Ist er fehlerhaft ebenfalls. Als Motor steht ein PL01-37x240 zur Verfügung.

Dies geschieht mit folgendem Ablauf:

1.	Linearmotor auf Position 40 mm fahren, mit v = 3 m/s und a = 5 m/s^2
2.	Kraft auf 40 N reduzieren und mit einer Geschwindigkeit von 0.05 m/s den Quader zusam- menpressen
3.	2 Sekunden pressen
4.	Überprüfen der Toleranzen: Wenn der Linearmotor sich an einer Position grösser als 65 mm und kleiner als75mm befindet ist der Quader in Ordnung, ansonsten fehlerhaft.
5.	Rückfahrt zur Ausgangsposition 0mm, mit v = 0.5 m/s und a = 5 m/s^2

Lösung

Für diese Aufgabe bietet sich die Command Table an. Diese ermöglicht die Programmierung von einfachsten bis zu komplexen Abläufen mithilfe verschiedenster Motion Commands, Bedingungen, Verzweigungen, Parameterzugriff ...

Die Command Table für den geforderten Ablauf wird mit der Software LinMot-Talk1100 erstellt

und auf den Controller geladen. Das Triggersignal wird an X4.6 angeschlossen. Ist der Quader innerhalb der Toleranz, wird dies an X4.8 (OK) signalisiert, ist er ausserhalb der Toleranz an X4.7 (Fehler).

Um die Kraft des Linearmotors auf 40 N zu beschränken, muss der maximale Strom begrenzt werden. Der Motor vom Typ PL01-37x240 hat eine Kraftkonstante von 23.8 N/A, woraus für 40 N ein Strom von 1.68 A folgt (40/23.8). Die Schleppfehlerüberwachung des Controllers muss deaktiviert werden, da der Motor die Sollposition beim Pressen nicht erreichen wird. Was in dieser Aufgabe bewusst gewollt ist.

Hardware Schnittstellen:
Triggersignal an X4.6 (Input)
Error Signal an X4.7 (Output)
OK Signal an X4.8 (Output)

Konfiguration des Controllers:						
1. RunMode einstellen:						
	Command Table Mode	On	UPID 1450h	Run Modus Command Table Mode		
2. Command Tab	le Entry ID einstellen					
	Command Table Entry ID	1	UPID 1485h	Festlegen der Startzeile		
3. Konfigurieren c	les Triggereingangs:					
	Trigger (Input)	On	UPID 1039h	X4.6 als Trigger Eingang		
	Direct	On	UPID 170Ch	Trigger Modus direkt		
4. Konfigurieren c	les Error Ausgangs:					
	Interface Output	On	UPID 103Ah	X4.7 als Interface Ausgang		
5. Konfigurieren c	les OK Ausgangs:					
	Interface Output	On	UPID 103Bh	X4.8 als Interface Ausgang		
6. Deaktivieren der Schleppfehlerüberwachung:						
	Position Lag Always	False	UPID 1587h	allgemeiner Schleppfehler ausschalten		
	Position Lag Standing	False	UPID 1588h	Schleppfehler im Stillstand ausschalten		

7. Erstellen der Command Table

🛛 🖳 Upload from Controller 🔤 🛛 Download to Controller

U	Name	Туре	Par 1	Par 2	Par 3	Par 4	Sequenced Entry
1	Warte Trigger	Wait until Rising Trigger Edge					2 (Fahre Pos 40mm)
2	Fahre Pos 40mm	VAI Go To Pos	Pos: 40 mm	Vel: 3 m/s	Acc: 5 m/s ²	Dec: 5 m/s^2	3 (Warte InPosition)
3	Warte InPosition	Wait until In Target Position					4 (Fahre Pos 90mm
4	Fahre Pos 90mm	VAI Go To Pos	Pos: 100 mm	Vel: 0.05 m/s	Acc: 2 m/s ²	Dec: 2 m/s^2	5 (Kraft reduzieren)
5	Kraft reduzieren	Write Live Parameter	UPID: 13A6h (Maximal Current)	Value: 1.68 A			6 (Kraft erreicht?)
6	Kraft erreicht?	IF Current Greater Than	Val: 1.67 A	True Cmd ID: 10 (Presse 2s)	False Cmd ID: 7 (Dummy)		None
7	Dummy	No Operation					8 (Pos > 99 mm?)
8	Pos > 99 mm?	IF Actual Position Greater Than	Val: 99 mm	True Cmd ID: 14 (Set Error ×4.7)	False Cmd ID: 6 (Kraft erreicht?)		None
9							
10	Presse 2s	Wait Time	Time: 2000 ms				11 (Pos kleiner 65?)
11	Pos kleiner 65?	IF Actual Position Less Than	Val: 65 mm	True Cmd ID: 14 (Set Error X4.7)	False Cmd ID: 12 (Pos grösser 75?)		None
12	Pos grösser 75?	IF Actual Position Greater Than	Val: 75 mm	True Cmd ID: 14 (Set Error ×4.7)	False Cmd ID: 15 (Set OK ×4.8)		None
13							
14	Set Error X4.7	Write Live Parameter	UPID: 1C89h (X4 Intf Outputs)	Value: 00000010h			17 (Fahre Pos Omm)
15	Set OK X4.8	Write Live Parameter	UPID: 1C89h (X4 Intf Outputs)	Value: 00000020h			17 (Fahre Pos Omm)
16							
17	Fahre Pos Omm	VAI Go To Pos From Act Pos And Act Vel	Pos: 0 mm	Vel: 0.5 m/s	Acc: 10 m/s^2	Dec: 10 m/s^2	18 (Normale Kraft)
18	Normale Kraft	Write Live Parameter	UPID: 13A6h (Maximal Current)	Value: 8 A			19 (Warte InPosition
19	Warte InPosition	Wait until In Target Position					20 (Reset Ausgänge
20	Reset Ausgänge	Write Live Parameter	UPID: 1C89h (X4 Intf Outputs)	Value: 00000000h			1 (Warte Trigger)

Hinweis

In Zeile 4 der Command Table wird ein VAI Go To Pos Befehl mit der Zielposition 100mm gesendet. Diese Position soll vom Linearmotor nie erreicht werden, er soll auf den Quader pressen. Wenn der Linearmotor auf kein Hindernis trifft, wird er, sobald er die Position 99mm erreicht, eine Fehlermeldung an X4.7 ausgeben. Die Zeile 7 mit dem Befehl No Operation ist nötig, um die beiden IF-Anweisungen in Zeile 6 und 8 zu entkoppeln.

8. Hochpräzises Positionieren

Aufgabe

Für eine hochpräzise Positionieraufgabe soll zur Verbesserung der Positioniergenauigkeit, die Position des Linearmotors durch einen hochauflösenden externen Sensor gemessen werden.

Lösung

Die Controller der E1100 Serie unterstützen die Einbindung eines externen Positionssensors an X12. In diesem Beispiel wird ein AB Linear Encoder vom Typ MS01-1/D (LinMot Art.Nr. 0150-1840) mit einer Auflösung von 1µm verwendet.

Hardware Schnittstelle:

Anschliessen des externen Sensors an X12 am Controller.

Konfiguration des Sensors:

Öffnen des Motor Wizard -> Schritt 4 "Externe Positionssensorik"

Einstellungen				
Auswahl des Typs:	Der MS01-1/D ist ein AB Sen- sor			
Einstellen der Zählrichtung:	Positive oder Negativ			
Konfigurieren der Auflösung:	1 µm			
Weitere Einstellmöglichkeiten unter "Parameters -> Motor Configuration -> Position Feedback -> Feedback on X12/X10"				

Konfigurieren eines externen Positionssensors mithilfe des MotorWizard

Nach der Konfiguration des externen Sensors sollte die Zählrichtung folgendermassen überprüft werden. Zuerst die Firmware starten und anschliessend den Läufer manuell mit der Hand verschieben. Dabei die Position im Control Panel von LinMot-Talk beobachten. Wird der Läufer vorne aus dem Stator gezogen, muss die aktuelle Position in positiver Richtung zählen.

9. Betrieb mit externem absolut Sensor

Aufgabe

In einer komplexen Anwendung ist es nicht möglich, eine Fahrt zur Referenzierung des Linearmotors durchzuführen. Aus diesem Grund wird ein absolut Sensor zu Positionserfassung des Linearantriebs verwendet.

Lösung

Das Signal des absolut Sensors wird auf die SPS geführt. Damit der Linearmotor Randeffekte kompensieren kann, und eine optimale Positionsregelung erreicht wird, muss die Lage des Läufers zum Stator zum Zeitpunkt der Initialisierung bekannt sein. Da die aktuelle Position des absolut Sensors von der SPS an den Controller gesendet werden muss, ist eine Verbindung mittels serieller Schnittstelle oder Feldbus nötig.

Konfiguration des Controllers:					
	Actual Position	On	UPID 13C4h	Homing-Modus einstellen.	
	Disable	On	UPID 13D8h	Auto on Homing deaktivieren	

Abla	auf zur Initialisierung des Antriebs:
1.	Controller einschalten
2.	Motor Enable
3.	SPS liest IstPosition des absolut Sensors ein
4.	Home Position schreiben (IstPosition des absolut Sensors) UPID 13C7h
5.	Slider Home Position schreiben (Siehe unten) UPID 13CAh
6.	Homing auf Actual Position (Bit 11 im Control Word setzen)
7.	Sobald im Status Word Bit 11 (Homed) gesetzt ist, Bit 11 im Control Word wieder löschen
8.	Antrieb bereit

Bestimmung der Slider Home Position:

Um eine korrekte Initialisierung des Antriebs zu gewährleisten, muss zuerst bestimmt werden, wie weit der Läufer aus dem Stator hinausragt (=Distanz k), wenn der absolut Sensor sich an der Nullposition befindet. (Siehe Abbildung)

Die Slider Home Position, die in Schritt 5 geschrieben werden muss, ist die IstPosition des absolut Senors plus die Distanz k.

Werden Änderungen an der Mechanik vorgenommen, muss möglicherweise k neu bestimmt werden.

10. Ansteuerung einer Bremse

Aufgabe

Ein Linearantrieb ist vertikal eingebaut. Um das Herunterfallen der Achse bei einem Fehler oder Stromausfall zu verhindern, soll eine mechanische Bremse eingesetzt werden, welche die Achse bei ausgeschaltetem Motor in Position hält.

Lösung

Die Controller der Serie E1100 unterstützen die Ansteuerung einer externen Bremse. X4.3 lässt sich als Bremsausgang mit einem maximalen Ausgangsstrom von 1A konfigurieren. Die Bremse arbeitet nach dem Ruhestromprinzip. D.h., bei anliegender Spannung wird sie gelüftet. Im Falle einer Störung geht der invertierte Bremsausgang auf OFF und die Bremse zieht an. Entsprechend ist der Bremsausgang des Controllers invertiert geschaltet (Betrieb: X4.3 = 1, Motor stromlos: X4.3 = 0). Fehler, die während einer Bewegung auftreten, lösen einen Quick-Stop aus, der den Motor sofort stoppt.Ist der QuickStop beendet, ist der Motor nicht mehr länger positionsgeregelt, d.h. der Motorstrom ist 0 (Null).

Konfigurieren des digitalen Ausgangs X4.3:						
	Brake (Output)	On	UPID 1036h	X4.3 als Bremsausgang		
Einstellen des Bremsmodus:						
Status Word:	Operation Enabled	True	UPID 1717h	Bremsmodus einstellen		
	Quick Stop	True	UPID 1716h	Bremsmodus einstellen		
verzogerungsze	iten konnguneren.	Γ				
	Apply Delay Time	100ms	UPID 171Bh	Nach Bedarf festlegen		
	Release Delay Time	50ms	UPID 171Ch	Nach Bedarf festlegen		

Apply Delay Time:

Ausschalten des Motors wird verzögert, bis die Bremse gegriffen hat.

Release Delay Time:

Das Lösen der Bremse wird verzögert, bis die aktive Positionsregelung arbeitet.

Um den Quick Stop im Control Panel in LinMot-Talk auslösen zu können, muss die UPID 13EEh auf "False" gesetzt werden.

Signalverlauf im Falle eines QuickStop

11. Sichere Impulssperre

Die sichere Impulssperre (Safety Voltage Enable) ist eine Sicherheitsfunktion. Die PWM-Generierung der Leistungselektronik wird

hardwaremässig erst freigeschaltet, wenn der Eingang Safety Voltage Enable (X4.12) auf High (+24V) ist.

Zur Realisierung des "Sicheren Halts" Kategorie 3 nach EN954-1 mit gesteuertem Stillsetzen

(Stopp 1 nach DIN EN60204-1) zeigt untenstehende Abbildung einen Schaltungsvorschlag.

Sobald die Impulsfreigabe über das Signal SVE gesperrt ist, wird die Leistungsendstufe ohne Verzögerung sicher ausgeschaltet. Die Impulsfreigabe ist extern als eine Klemme ausgeführt. Die Aufteilung in zwei unabhängige Signale geschieht intern im Servo Controller. Die externe Beschaltung muss so ausgeführt werden, dass ein Kurzschluss mit andern spannungsführenden Teilen ausgeschlossen werden kann.

.inMoi

Schaltungsvorschlag "Sicherer Halt'

12. Parallelbetrieb von zwei Motoren

Aufgabe

Es soll ein Portal mit zwei parallelen X-Achsen realisiert werden. Die beiden Motoren sollen sich parallel bewegen und von der übergeordneten Steuerung als eine Achse angesteuert werden können.

Lösung

Für diese Anwendung bieten die LinMot Controller die Master-Slave Application-Software mit der Funktion "Master Gantry" an. Dabei werden zwei Controller der E1100 Serie über die Stecker X7/X8 bzw. X10/X11(E1100-GP(-HC)) miteinander verbunden. Der eine Controller wird als Master konfiguriert und durch die übergeordnete Steuerung angesprochen, der andere wird als Slave konfiguriert und erhält vom Master die geforderte Sollposition. Beide Motoren sind unabhängig voneinander positionsgeregelt. Die Initialisierung des Slave Controllers wird parallel zum Master ausgeführt. Im Gantry-Betrieb liegen die Motoren eine gewisse Distanz auseinander und dürfen nicht 100% mechanisch steif gekoppelt sein.

Konfiguration der Controller:
Der Motor muss auf beiden Controllern konfiguriert werden (Motor Wizard)
Installation der Master-Slave Anwendung auf beiden Controllern: "File -> Install Firmware", \Firmware\Applications
Verbinden der beiden Controller via CAN-Bus (Stecker X7/X8) mit einem Ethernetkabel nach EIA / TIA 568A (Art. Nr. 0150-1853). CAN-Term S3.3 bei beiden Controllern auf ON setzen

Konfiguration des Masters:				
	CAN	On	UPID 3EF7h	Als Schnittstelle CAN wählen
	Gantry Master	On	UPID 30D4h	Controller als Gantry Master konfigurieren

Konfiguration des Slaves:					
	CAN	On	UPID 3EF7h	Als Schnittstelle CAN wählen	
	Gantry Slave	On	UPID 30D4h	Controller als Gantry Slave konfigurieren	
	Normal*	On	UPID 30E2h	Richtung des Slave-Antriebs wählen	
	*(Normal = beide Statoren schauen in dieselbe Richtung)				

13. Kraftverdoppelung durch Master Booster

Aufgabe

In einer Montageeinrichtung soll ein Werkzeug horizontal verschoben werden. Um die Dynamik und die Kraft zu erhöhen, sollen zwei Motoren parallel betrieben werden. Die beiden Antriebe sollen von der SPS als eine Achse angesteuert werden können.

Lösung

Für diese Anwendung bieten die LinMot Controller die Master-Slave Application-Software mit der Funktion "Master Booster" an. Dabei werden zwei Controller der E1100 Serie über die Stecker X7/X8 bzw. X10/X11 (E1100-GP(-HC)) miteinander verbunden. Der eine Controller wird als Master konfiguriert und durch die übergeordnete Steuerung angesprochen, der andere wird als Slave konfiguriert und erhält vom Master den berechneten Sollstrom (Slave nicht positionsgeregelt). Die Initialisierung des Slave Controllers wird parallel zum Master ausgeführt. Im Booster Betrieb müssen die Motoren mechanisch steif gekoppelt sein.

Konfiguration der Controller:
Der Motor muss auf beiden Controllern konfiguriert werden (Motor Wizard)
Installation der Master-Slave Applikation auf beiden Controllern: "File -> Install Firmware",\Firmware\Applications
Verbinden der beiden Controller via CAN-Bus (Stecker X7/X8) mit einem Ethernetkabel nach EIA / TIA 568A (Art. Nr. 0150-1853). CAN-Term S3.3 bei beiden Controllern auf ON setzen.

Konfiguration des Masters:				
	CAN	On	UPID 3EF7h	Als Schnittstelle CAN wählen
	Current Master	On	UPID 30D4h	Controller als Current Master konfigurieren

Konfiguration des Slaves:				
	CAN	On	UPID 3EF7h	Als Schnittstelle CAN wählen
	Current Slave	On	UPID 30D4h	Controller als Current Slave konfigurieren
	Normal*	On	UPID 30E2h	Richtung des Slave-Antriebs wählen
	*(Normal = beide Statoren schauen in dieselbe Richtung)			

14. Auswertung von Endlagen und Referenzschaltern

Aufgabe

Zwei LinMot Antriebe bewegen sich unabhängig voneinander auf demselben Läufer. Um Kollisionen zu verhindern, wird an einem Stator ein Endlagenschalter (Schalter 2) befestigt. Wenn dieser Schalter auslöst, bedeutet das, dass die Distanz zwischen den beiden Statoren zu klein geworden ist und die Motoren müssen umgehend gestoppt werden. Zusätzlich werden an den beiden Endlagen zwei zusätzliche Endschalter montiert (Schalter 1 und 3).

Lösung

An den Anschlüssen X4.8 und X4.9 der E1100 Serie Controller können Endschalter angeschlossen werden. Löst einer dieser Endschalter aus, wird der Motor sofort durch einen Quick Stop angehalten.

Hardware Schnittstellen:
Endschalter 1 wird an X4.8 von Controller 1 angeschlossen
Endschalter 2 an X4.9 von Controller 1 und an X4.8 von Controller 2
Endschalter 3 an X4.9 von Controller 2

Konfiguration Controller 1:				
	Limit Switch Negative (Input)	On	UPID 103Bh	X4.8 als Endschalter negativ
	Limit Switch Positive (Input)	On	UPID 103Ch	X4.9 als Endschalter positiv
	Quick Stop	On	UPID 121Bh	Fehlerverhalten einstellen
	Deceleration	10 m/s^2	UPID 1721h	Verzögerung bei Quick Stop

Konfiguration Controller 2:				
	Limit Switch Negative (Input)	On	UPID 103Bh	X4.8 als Endschalter negativ
	Limit Switch Positive (Input)	On	UPID 103Ch	X4.9 als Endschalter positiv
	Quick Stop	On	UPID 121Bh	Fehlerverhalten einstellen
	Deceleration	10 m/s^2	UPID 1721h	Verzögerung bei Quick Stop

Gegebenenfalls die Logik der Endschalter anpassen (auf beiden Controllern):				
	Invert I/O X4.8 (low active)	False	UPID 1050h	Logik von X4.8
	Invert I/O X4.9 (low active)	False	UPID 1051h	Logik von X4.9

www.LinMot.com

LinMot[®]

15. Pressen mit definierter Kraft

Aufgabe

In einer Anwendung werden Verschlüsse eingeschoben. Um zu kontrollieren, dass der Verschluss korrekt sitzt, sollen die Endposition und die aufgebrachte Kraft überprüft werden. Die geforderte Kraft beträgt 22 N und die Endposition 52mm mit einer Toleranz von +/- 1mm. Wird die Endposition erreicht, und die Kraft wurde nicht während 2s aufgebracht, oder liegt die Endposition ausserhalb der Toleranz, soll ein Fehler signalisiert werden. Andernfalls wird ein OK signalisiert. Die maximale Geschwindigkeit während des Einschiebens darf 0.05 m/s nicht überschreiten.

Die Prüfung wird mittels eines Triggersignals gestartet. Als Motor steht ein PL01-23x160 zur Verfügung

Lösung

Grundsätzlich ist die Kraftsteuerung sehr einfach und erfolgt über die Begrenzung des maximalen Motorstroms. Die resultierende Kraft wird über die Kraftkonstante [N/A] berechnet. Im Falle eines Motors vom Typ PL01-23x160 ist die Kraftkonstante 22.08 N/A. Es muss folglich ein Maximalstrom von 0.996 A gesetzt werden, um mit 22 N zu pressen. Es ist zu beachten, dass der maximal zulässige Strom vom eingesetzten Controller und dem Motorentyp abhängig ist. Das Triggersignal und die beiden digitalen Ausgänge für das Fehler- und OK-Signal werden auf den Stecker X4 gelegt.

Der geforderte Ablauf lässt sich mit kleinem Aufwand mit der Command Table realisieren.

Hardware Schnittstellen:
Triggersignal an X4.6 (Input)
Error Signal an X4.7 (Output)
OK Signal an X4.8 (Output)

Konfiguration des Controllers:					
1. RunMode einstellen:					
	Command Table Mode	On	UPID 1450h	Run Modus Command Table Mode	
2. Command Tabl	le Entry ID einstellen				
	Command Table Entry ID	1	UPID 1485h	Festlegen der Startzeile	
3. Konfigurieren d	les Triggereingangs:				
	Trigger (Input)	On	UPID 1039h	X4.6 als Trigger Eingang	
	Direct	On	UPID 170Ch	Trigger Modus direkt	
4. Konfigurieren d	les Error Ausgangs:				
	Interface Output	On	UPID 103Ah	X4.7 als Interface Ausgang	
5. Konfigurieren d	les OK Ausgangs:				
	Interface Output	On	UPID 103Bh	X4.8 als Interface Ausgang	
6. Deaktivieren de	er Schleppfehlerüberwachung:				
	Position Lag Always	False	UPID 1587h	allgemeiner Schleppfehler ausschalten	
	Position Lag Standing	False	UPID 1588h	Schleppfehler im Stillstand ausschalten	
7. Erstellen der Command Table					
g Upload from Controller g D Download to Controller					

ID	Name	Туре	Par 1	Par 2	Par 3	Par 4	Sequenced Entry
1	Warte Trigger	Wait until Rising Trigger Edge					2 (Fahre Pos 40mm)
2	Fahre Pos 40mm	VAI Go To Pos	Pos: 40 mm	Vel: 3 m/s	Acc: 5 m/s^2	Dec: 5 m/s^2	3 (Warte InPosition)
3	Warte InPosition	Wait until In Target Position					4 (Fahre Pos 90mm)
4	Fahre Pos 90mm	VAI Go To Pos	Pos: 100 mm	Vel: 0.05 m/s	Acc: 2 m/s ²	Dec: 2 m/s^2	5 (Kraft reduzieren)
5	Kraft reduzieren	Write Live Parameter	UPID: 13A6h (Maximal Current)	Value: 1.68 A			6 (Kraft erreicht?)
6	Kraft erreicht?	IF Current Greater Than	Val: 1.67 A	True Cmd ID: 10 (Presse 2s)	False Cmd ID: 7 (Dummy)		None
7	Dummy	No Operation					8 (Pos > 99 mm?)
8	Pos > 99 mm?	IF Actual Position Greater Than	Val: 99 mm	True Cmd ID: 14 (Set Error ×4.7)	False Cmd ID: 6 (Kraft erreicht?)		None
9							
10	Presse 2s	Wait Time	Time: 2000 ms				11 (Pos kleiner 65?)
11	Pos kleiner 65?	IF Actual Position Less Than	Val: 65 mm	True Cmd ID: 14 (Set Error ×4.7)	False Cmd ID: 12 (Pos grösser 75?)		None
12	Pos grösser 75?	IF Actual Position Greater Than	Val: 75 mm	True Cmd ID: 14 (Set Error X4.7)	False Cmd ID: 15 (Set OK X4.8)		None
13							
14	Set Error X4.7	Write Live Parameter	UPID: 1C89h (X4 Intf Outputs)	Value: 00000010h			17 (Fahre Pos Omm)
15	Set OK X4.8	Write Live Parameter	UPID: 1C89h (X4 Intf Outputs)	Value: 00000020h			17 (Fahre Pos Omm)
16							
17	Fahre Pos Omm	VAI Go To Pos From Act Pos And Act Vel	Pos: 0 mm	Vel: 0.5 m/s	Acc: 10 m/s^2	Dec: 10 m/s^2	18 (Normale Kraft)
18	Normale Kraft	Write Live Parameter	UPID: 13A6h (Maximal Current)	Value: 8 A			19 (Warte InPosition
19	Warte InPosition	Wait until In Target Position					20 (Reset Ausgänge
20	Reset Ausgänge	Write Live Parameter	UPID: 1C89h (X4 Intf Outputs)	Value: 00000000h			1 (Warte Trigger)
21							

8. Command Table auf dem Controller speichern -> Download to Controller

LinMot[®]

16. Kraftregelung mit 0.1 N Auflösung

Aufgabe

Zur Qualitätskontrolle sollen in einer Anlage Federn auf ihre Stärke geprüft werden. Dazu muss mit einer konstanten Kraft von 43.2 N vertikal auf die Feder gedrückt werden. Mithilfe der internen Positionsmessung wird ermittelt, wie stark die Feder zusammengepresst wird. Je nach gemessener Distanz erfüllen die Federn die Spezifikation. Die aufgebrachte Kraft wird von einer Kraftmessdose mit einem Messbereich von 0 bis 50 N gemessen.

Lösung

LinMot bietet mit der Kraftregelung eine Technologiefunktion, welche eine präzise Regelung einer konstanten Kraft im ganzen Hubbereich, unabhängig von der aktuellen Position und mit einer Auflösung von bis zu 0.1 N ermöglicht. Da die vom Linearmotor generierte Kraft von einer Kraftmessdose gemessen und direkt im Servo Controller geregelt wird, werden störende Effekte wie unterschiedliche Reibung, Verschmutzung, Slip-Stick-Effekte, Temperaturschwankungen und andere Störgrössen ausgeregelt. Die von der Kraftmessdose ermittelte Kraft wird als ein analoges Signal (0 bis 10V) auf den Anschluss X4.4 geführt.

Hardware Schnittstelle: Das analoge Signal der Kraftmessdose wird an X4.4 angeschlossen

Konfiguration von X4.4:							
	Analog Input	On	UPID 1037h	X4.4 als analogen Eingang konfigurieren			
	Force	On	UPID 1790h	Signaltyp Kraft			
Konfiguration der Kraft bei 0V an X4.4							
	0V Force	0 N	UPID 1501h	Kraft bei 0V festlegen			
Konfiguration der Kraft bei 10V an X4.4							
	10V Force	50	UPID 1502h	Kraft bei 10V festlegen			

Die Kraftregelung kann nun mit folgenden Befehlen genutzt werden:					
VAI Go To Pos With Force Ctrl Limit (380xh):					
Fahrt zu definierter Zielposition. Sobald die gemessene Kraft das Kraftlimit erreicht, wechselt der Controller in den Modus Kraftsteuerung mit Sollkraft = Kraftlimit. Um wieder mit Positionsregelung zu fahren, den Befehl "VAI Go To Pos From Act Pos And Reset Force Control (381xh)" benutzen!					
VAI Go To Pos With Force Ctrl Limit And Target Force (383xh):					
Fahrt zu definierter Zielposition. Sobald die gemessene Kraft das Kraftlimit erreicht, wechselt der Controller in den Modus Kraftsteuerung mit Sollkraft = Target Force. Um wieder mit Positionsregelung zu fahren, den Befehl "VAI Go To Pos From Act Pos And Reset Force Control (381xh)" benutzen!					
Force Ctrl Change Target Force (382xh):					
Mit diesem Befehl kann die Sollkraft im Kraftregelungsmodus geändert werden.					
VAI Go To Pos From Act Pos And Reset Force Control (381xh)					
Reaktiviert die Positionsregelung und fährt an die definierte Position.					
Detaillierte Beschreibungen der Befehle sind im Motion Control SW Handbuch zu finden.					

Die Kraftregelung ist eine Technologiefunktion, die separat bestellt wird. (LinMot Art. Nr. 0150-2503)

LinMot[®]

17. Einbindung von rotativen Motoren

Aufgabe

In einer Anlage mit Profibus soll ein bürstenloser Servomotor (EC Motor) mit Getriebe und Spindel mit einem LinMot Controller E1130-DP eingesetzt werden.

Der Antrieb ist ein Faulhaber Motor vom Typ 2036 U 036 B K1155. Das Getriebe hat ein Untersetzungsverhältnis von 3.71:1. Die Spindel besitzt eine Steigung von 1.5mm pro Umdrehung.

Lösung

Die Controller der Serie E1100 unterstützen die Ansteuerung von 3-phasigen, rotativen EC Mo-

toren. Für einige Motorentypen stehen Actuator Definition Files (*.adf) zur Verfügung. Sämtliche

bereits unterstützen Motoren sind im Handbuch "EC_Motors_with_E1100" aufgelistet.

Anschliessen des Motors:				
	Motorphasen A, B, C an X2 (Alternativ X3)	(A->U, B->V, C->W)		
	Analoge Hall Sensoren A, B, C an X3	(A->X3.4, B->X3.9, C->X3.5)		

Konfiguration des Controllers:				
	Motor Wizard öffnen			
	ADF Datei wählen:\Other Motors\EC Motors\Faulhaber\Faulhaber_EC.adf			
	Motorentyp wählen: 2036 U 036 B K1155			
	Bei Schritt 3 des Wizards wird das Übersetzungsverhältnis zwischen Motorwinkel und Position eingestellt. Wenn dem Controller eine Position in mm vorgegeben wird, soll sich der Linearschlitten der Spindel an diese Position bewegen. Deshalb muss berechnet werden, wie viele Millimeter Hub einer Umdrehung des Motors entsprechen.			
	Die Nominaluntersetzung des Getriebes ist 3.71:1, die Steigung der Spindel ist 1.5 mm pro Umdrehung. Folglich ergibt eine Umdrehung des Motors 1.5/3.71 = 0.4043 mm. Dieser Wert wird bei "1 Umdrehung = mm" eingetragen.			
	Einstellungen in Schritt 4 und 5 vornehmen und den Wizard abschliessen.			

Für die Ansteuerung von rotativen Motoren steht derselbe Funktionsumfang wie bei Linearmotoren zur Verfügung.

18. Synchronisation zur Königswelle: Master Encoder 0° bis 360°

Aufgabe

In einer Anlage soll ein Linearmotor ein Bewegungsprofil synchron zur Königswelle abfahren. Der inkrementelle Master Encoder (ABZ) hat 512 Striche pro Umdrehung. Das gesamte Bewegungsprofil soll innerhalb einer Umdrehung der Königswelle (360 Maschinengrade) ablaufen.

Lösung

Diese Aufgabe wird mit dem Run Mode "CAM Mode" gelöst. Dabei kann ein Bewegungsprofil erstellt und im Controller gespeichert werden. Das Bewegungsprofil wird nach dem Aufstarten des Controllers gestartet, wenn der Antrieb initialisiert wurde, der Controller sich im Zustand 8 "Operation Enabled" befindet und zum ersten Mal ein Z-Signal des Encoders detektiert wurde.

Erstellen des Bewegungsprofils:

Das Encodersignal der Königswelle wird 4-Fach ausgewertet. Daraus ergeben sich 2048 Inkremente pro Umdrehung des Master Encoders.

Im Curve Inspector in LinMot-Talk1100 wird das gewünschte Bewegungsprofil vom Typ "CAM (Pos. vs. Enc. Pos.)", mit einer Länge von 2048 Inkrementen erstellt. Eine Anleitung zur Erstellung von Kurven ist im Handbuch LinMot-Talk1100 zu finden.

Anschliessend wird die erstellte Kurve mit ID 1 auf den Controller geladen.

Hardware Schnittstelle:						
	Der Master Encoder wird an X12 des Controllers angeschlossen.					
RunMode konfigurieren:						
	CAM Mode On UPID 1450h Run Modus CAM Mode		Run Modus CAM Mode			
	Start Counts	0	UPID 1523h	Startoffset einstellen		
	Curve ID	1	UPID 1524h	ID der Kurve konfigurieren		
Master Encoder konfigurieren:						
	Ext Sensor Input X12	On	UPID 172Ah	Master Encoder an X12		
	ABZ	On	UPID 128Eh	Encoder vom Typ ABZ		
	4x	On	UPID 128Fh	Encodersignal 4fach decodieren		
	CAM lenght	2048	UPID 1525h	Länge der Kurvenscheibe		

19. Synchronisation zur Königswelle: CAM1/CAM2

90°

150°

210°

Lösung

Die Controller der Serie E1100 unterstützen das Definieren von zwei CAM's. Dies ermöglicht das Laden eines Bewegungsprofils in ein CAM, während das Bewegungsprofil des anderen CAM abgefahren wird, und umgekehrt. Der Master Encoder hat 512 Striche pro Umdrehung. Der

60°

0°

Controller wird so konfiguriert, dass das Encodersignal 4x decodiert wird, woraus sich 2048 Inkremente pro Umdrehung des Master Encoders

270°

Erstellen des Bewegungsprofils:

Es wird ein zunächst ein einfaches sinusförmiges Bewegungsprofil benötigt. Dieses wird mit LinMot-Talk1100 erstellt und auf dem Controller gespeichert.

Typ: Cam (Pos. vs. Enc. Pos.), 0 bis 100mm, Länge: 512 Counts, ID 1

Hardware Schni	ttstelle:
	Die ABZ Signale des Master Encoders werden an X12 des Controllers angeschlossen.

Master Encoder konfigurieren:					
	Ext Sensor Input X12	On	UPID 172Ah	Master Encoder an X12	
	ABZ	On	UPID 128Eh	Encoder vom Typ ABZ	
	4x	On	UPID 128Fh	Encodersignal 4fach decodieren	
	CAM lenght	2048	UPID 1525h	Länge der Kurvenscheibe	

Ab	Ablauf:					
1.	Laden der Kurve in	С	AM1 mit dem Befehl:			
		E	Encoder CAM 1 Define Curve T	o Pos In Counts (114xh)		
			Curve ID:	1		
			Curve Start Count	0 Incr		
			Target Position	50 mm		
			Curve Length	341		
2.	Aktivieren des CAM	1-1	Nodus mit dem Befehl:			
		E	Encoder CAM Enable (100xh)			
			Sobald nun das erste Z-Signa	al des Encoders detektiert wird, folgt der Motor dem Bewegungsprofil in CAM1.		
3.	Während mit CAM1	l d	lie Kurve abgefahren wird, mus	ss CAM2 geladen werden:		
		E	Encoder CAM 2 Define Curve T	o Pos In Counts (124xh)		
			Curve ID:	1		
			Curve Start Count	512 Incr		
			Target Position	100 mm		
			Curve Length	341		
4.	Während mit CAM2	AM2 die Kurve abgefahren wird, muss wieder CAM1 geladen werden:				
		Encoder CAM 1 Define Curve To Pos In Counts (114xh)				
			Curve ID:	1		
			Curve Start Count	1195 Incr		
			Target Position	50 mm		
			Curve Length	341		
5.	Während mit CAM1 die Kurve abgefahren wird, muss wieder CAM2 geladen werden:					
	Encoder CAM 2 Define Curve To Pos In Counts (124xh)					
			Curve ID:	1		
			Curve Start Count	1536 Incr		
			Target Position	0 mm		
			Curve Length	512		
6.	Während mit CAM2	M2 die Kurve abgefahren wird, muss CAM1 wieder für die nächste Umdrehung des Encoders geladen werden:				
		Encoder CAM 1 Define Curve To Pos In Counts (114xh)				
			Curve ID:	1		
			Curve Start Count	0 Incr		
			Target Position	50 mm		
			Curve Length	341		
7.	Wiederholen der Schritte 3 bis 6					

Motion Commands können einerseits über serielle Schnittstellen, Feldbusse oder die Command Table aufgerufen werden. Zu Übungszwecken können sie auch über das Control Panel in LinMot-Talk 1100 abgesetzt werden (Motion Command Interface). Weitere Informati-

onen dazu sind in den Handbüchern "LinMot-Talk 1100" und "Motion Control SW" zu finden. Die Synchronisierung und das Aufstarten bei stehendem Master Encoder bzw. die (Re)Synchronisierung zu einem laufenden Master Encoder sind im Benutzerhandbuch "Motion Control SW" in Kapitel 5.3 beschrieben.

LinMot[®]